Dynamical and topological robustness of the mammalian cell cycle network: A reverse engineering approach
نویسندگان
چکیده
A common gene regulatory network model is the threshold Boolean network, used for example to model the Arabidopsis thaliana floral morphogenesis network or the fission yeast cell cycle network. In this paper, we analyze a logical model of the mammalian cell cycle network and its threshold Boolean network equivalent. Firstly, the robustness of the network was explored with respect to update perturbations, in particular, what happened to the attractors for all the deterministic updating schemes. Results on the number of different limit cycles, limit cycle lengths, basin of attraction size, for all the deterministic updating schemes were obtained through mathematical and computational tools. Secondly, we analyzed the topology robustness of the network, by reconstructing synthetic networks that contained exactly the same attractors as the original model by means of a swarm intelligence approach. Our results indicate that networks may not be very robust given the great variety of limit cycles that a network can obtain depending on the updating scheme. In addition, we identified an omnipresent network with interactions that match with the original model as well as the discovery of new interactions. The techniques presented in this paper are general, and can be used to analyze other logical or threshold Boolean network models of gene regulatory networks.
منابع مشابه
Dynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملI-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملConsidering chain to chain competition in forward and reverse logistics of a dynamic and integrated supply chain network design problem
In this paper, a bi-objective model is presented for dynamic and integrated network design of a new entrant competitive closed-loop supply chain. To consider dynamism and integration in the network design problem, multiple long-term periods are regarded during planning horizon, so that each long-term period includes several short-term periods. Furthermore, a chain to chain competition between t...
متن کاملAn Ant Colony approach to forward-reverse logistics network design under demand certainty
Forward-reverse logistics network has remained a subject of intensive research over the past few years. It is of significant importance to be issued in a supply chain because it affects responsiveness of supply chains. In real world, problems are needed to be formulated. These problems usually involve objectives such as cost, quality, and customers' responsiveness and so on. To this reason, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio Systems
دوره 115 شماره
صفحات -
تاریخ انتشار 2014